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mine impacts on nutrient recycling. Overall, zebra mussels removed >70 per-
cent of the suspended seston and >80 percent of the total chlorophyll a input to
the microcosms. Declines in organic nitrogen in microcosms were accompa-
nied by density-dependent increases in nitrate-nitrite nitrogen.

Research described in this technical note suggests that microflora associated
with the sediments in the microcosms were responsible for transforming ammo-
nium nitrogen, an excretory product of zebra mussels, into nitrate nitrogen.
Declines in total phosphorus in the microcosms aiso coincided with density-
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to 2.5 mg m> day'l) via zebra mussels at densities of only ~1,300 individual
per square meter (ind./m'z) has important implications for the phosphorus econ-
omy of Lake Pepin, a natural impoundment of the upper Mississippi River
(UMR) that has been recently invaded by zebra mussels.

These studies examined the influence of varying zebra mussel densities on
particulate matter and soluble nutrient dynamics in laboratory sediment-water
microcosms for application to ongoing investigations of nutrient loadings and
water quality in Lake Pepin.

This technical note was written by Mr. William F. James and Mr. Harry L.
Eakin, U.S. Army Engineer Waterways Experiment Station (WES) Eau Galle

Vicksburg, MS. For further information, contact Mr. James, (715) 778-5896,
Jjameswl @mail.wes.army.mil. Dr. Ed Theriot, WES, (601) 634-2678, is Man-
ager of the Zebra Mussel Research Program.
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Methods

high densities can graze seston (including phytoplankton) and thus filter water
at tremendous rates, resulting in the transfer of suspended particulate matter
from the water column to sediments (Reeders and de Vaate 1990). Excretion of
feces and pseudofeces on the sediment surface may affect sediment chemistry
and nutrient dynamics at the sediment-water interface. Considered collectively,
these processes may have important impacts on food web dynamics, contami-
nant cycling, and water/sediment quality (Holland 1993; Leach 1993; Nicholls
and Hopkins 1993; Bruner, Fisher, and Landrum 1994; Effler and Siegfried
1994; Cotner and others 1995; Gardner and others 1995; Heath and others
1995; Holland, Johengen, and Beeton 1995).

While much is known about the impacts of zebra mussel grazing on seston con-
centrations in aquatic systems (Leach 1993; Nicholls and Hopkins 1993;
Fanslow, Napela, and Lang 1995; Holland, Johengen, and Beeton 1995; Maden-
Jjian 1995), little information exists regarding the roles of zebra mussels in sol-
uble nutrient regeneration, particularly in rivers.

These processes were evaluated in assessing the nutrient loadings and water
quality in Lake Pepin, a eutrophic impoundment on the UMR system that was
invaded (~1994) and has been colonized by zebra mussels. The lake, created
naturally as a result of river delta formation via the Chippewa River, is large
934 kmz), has a mean and maximum depth of 5.4 m and 17 m, respectively,
and a water residence time of ~19 days. Its watershed (~122,000 kmz) includes
drainage from the Minnesota and St. Croix Rivers.

Laboratory microcosms consisted of 4-L polycarbonate containers measuring
20 cm in height and 17 cm in diameter. Three replicate control microcosms con-
tained sediment and lake water, while replicate experimental microcosms (three
replicates for each experimental treat-
ment) contained sediment, lake

water, and zebra mussels. Experimen- Table 1. Zebra Mussel Density
tal treatments consisted of four levels Levels in Replicate Microcosms

from 170 to 1,300 ind./m? in the
microcosms (Table 1).

of zebra mussel densities ranging Density Level (ind/m?) 1
170 (3 ind./microcosm)

340 (6 ind./microcosm)
Surface sediment was collected with 620 (11 ind./microcosm)
a ponar sediment sampler from a 1,300 (23 ind./microcosm)

backwater region of the upper Missis-
sippi River located below Lake Pepin (Finger Lakes region). The sediment was
drained of excess water and homogeneously mixed before dispensing ~1.5 L
into each microcosm. Water in each microcosm was flushed via a peristaltic
pump system at a rate of approximately 2.4 L/day (residence time = 0.6 day)
throughout the study with fresh lake water obtained daily from Eau Galle
Reservoir, Wisconsin.

At daily intervals, freshly collected lake water was homogeneously mixed, with
3.5-L aliquots dispensed into separate 5-L plastic containers for inflow into
each microcosm. The inflow containers were gently aerated to maintain parti-
cles in suspension during pumping. Outflow water from each microcosm was
collected daily in plastic containers.

To maintain accurate water and material fluxes for each microcosm, inflow
and outflow volumes (liters) were measured at daily intervals. The assembled
flow-through microcosms were placed in a temperature-controlled water bath
(18 °C) where they were gently aerated with air stones to maintain aerobic
conditions. The duration of the study was 2 weeks (4-16 October 1995).

Zebra Mussel Research Technical Notes 2
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The zebra mussels used for the study (mean length = 21 mm + 0.2 S.E. (stand-
ard error); minimum lcngth = 15 mm; maximum length = 30 mm; mean fresh
weight = 1.5 g/md + 0.1 S.E.) were collected from the southern basin of Lake
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Pepin and pia d in a constani-temperature (18 "C) waier tank (~100 L) for an
equilibration period of about 2 weeks prior to initiation of the study. Fresh lake
water was constantly circulated though the tank at a rate of ~100 L/day to main-
tain a food supply for the zebra mussels during the equilibration nenod

Every Monday, Wednesday, and Friday during the -week period of stu f‘y, sub-
samples were collected from microcosm outflows for chemical analyses. In ad-

dition, three replicate samples of homogeneously mlxed inflow water were
collected for chemical analysis. Samples were filtered onto precombusted glass
fiber filters (Gelman A/E), dried to a constant weight at 105 °C for suspended
seston analysis, and then combusted at 500 °C for 1 hr for particulate organic
matter (POM) determination (American Publlc Heaith Association, APHA
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992). Sampies for total nitrogen and phos; s were predigested with potas-
sium persulfate according tc Ameel, Axler, aﬂd Owen (1993) before determin-

ing concentrations colorimetrically on an automated system (Lachat Methods

10-107-04-1-A and 10-115-01-1-A; Lachat QuikChem AE System, Zellweger
Analytics/Lachat Instruments Division, Milwaukee, WI).

For analysis of soluble constituents, water samples were filtered through a
0.45-um filter (Gelman Metricel) prior to analysis. Soluble reactive phosphorus
(Lachat Method 10-115-01-1-A), nitrate-nitrite nitrogen (Lachat Method
10-107-04-01-A), and ammonium nitrogen (Lachat Method-A) were analyzed

colorimetrically using automated procedures (APHA 1992). Total inorganic

nitrogen was caicuiated as the sum of ammonium nitrogen and nitrate-nitrite
nitrogen. Organic nitrogen was ca‘cul"ted as the difference between total
nitrogen and total inorganic nitrogen.

Sampies for the determination of chlorophyll were filiered onto glass fiber filters,
macerated with a tissue grinder, and extracted in 90 percent alkaline acetone at

phytm a were detenmned from the clanﬁed extract accordmg to APHA (1992).
Total chlorophyll was calculated as the sum of viable chlorophyll a and phaeo-
phytin a. At the end of the study, zebra mussels from each microcosm were
weighed for fresh weight biomass determination.

To determine concentration changes and rates of soluble nutrient regeneration
due to zebra mussel activities, mean outflow concentrations obtained from the
control microcosms were compared with outflow concentrations obtained from
individual zebra mussel density treatments.

It was assumed that outflow concentrations of the control microcosms reflected
the difference between infiow concentrations and sedimentation in the infiow

PSSP I

COntainers.

Rates of suspended seston, POM, and total chiorophyii remov ai via bra mus-

sels and rates of solubie nitrogen and phosphorus regeneration via z mus-
sels were calculated as
((’ com‘rol) x QA
where
C, .. = mean daily concentration of the outflow for experimental
-r .
microcosms
C_ .., = mean daily concentration of the outflow for control microcosms
Q = daily flow rate (L/day)
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Results and
discussion

A = cross-sectional area of the microcosms (0.0176 mz) or
fresh weight biomass of the zebra mussels

Filtration rates (FR) were calculated as the decrease in total chlorophyll a ac-
cording to the equation (Kraak and others 1994)

FR = Q/n x In C/C;

where
n = number (or biomass) of zebra mussels per microcosm
C, = mean total chlorophyll a concentration in control microcosms
C, = mean total chlorophyll a concentration in experimental microcosms

f

Mean concentrations of suspended seston, POM, and total chlorophyll declined
significantly in experimental microcosms containing zebra mussels, compared
with controls, indicating substantial removal of particles via filtration activities
of the zebra mussels (Figures 1a-c). Overall, zebra mussels accounted for re-
moval of >70 percent of the suspended seston and POM and >80 percent of the
total chlorophyll input.

Zebra mussel filtration rates were 0.6 to 0.8 L g fresh weight' day™ (1.0t0 1.5 L
ind." day'l), indicating that the entire daily water income to the microcosms
(that is, ~2.4 L/day) was filtered by zebra mussels, even at the lowest density
levels. Rates of removal of suspended particles per gram of zebra mussel
biomass decreased as a function of increased density level (Table 2), suggesting
that inflow seston concentrations were insufficient in relation to zebra mussel
needs at the higher density levels.

Table 2. Mean (1 S.E.) Rates of Removal of Suspended Seston, Particulate Organic Matter,
and Total Chlorophyll in Microcosms as a Function of Zebra Mussel Density”

Density Suspended Seston POM Total Chlorophyll®
(ind/m") (mg g'l biomass day'l) (mg g'l biomass day'l) (ng g'1 biomass day'l)
170 1.32 (0.19) 0.99 (0.16) 15.04 (2.36)
c b b
340 1.18 (0.09) 0.90 (0.08) 14.31 (0.89)
b, ¢ b b
620 0.40 (0.04) 0.27 (0.03) 4.59 (0.52)
a,b a a
1,300 0.24 (0.03) 0.18 (0.03) 2.91 (043)
a a a
NOTES:

3 Rates of removal are corrected for the control rates and normalized with respect to zebra mussel fresh weight
biomass. Different letters indicate significant differences at p < 0.05, based on Duncan’s Multiple Range
Analysis (ANOVA; SAS 1988).

b Viable chorophyll plus phacopigments.

Mean concentrations of total and ammonium nitrogen did not differ signifi-
cantly among any of the microcosms (Figures 1d and le). Organic nitrogen (not
shown) decreased in experimental microcosms, relative to control microcosms,
but there were no trends in concentration as a function of zebra mussel density.
Mean nitrate-nitrite nitrogen and the percentage (relative to total nitrogen) of
total inorganic nitrogen increased significantly as a function of zebra mussel
density (Figures 1f and 1g).
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Figure 1. Mean (x1 S.E.) variations as a function of zebra mussel density. For the x-axis, C is the control, and

3, 6, 11, and 23 are the numbers of zebra mussels in each treatment (see Table 1). Different letters above the
means represent significant differences at p < 0.05 (analysis of variance, ANOVA; Statistical Analysis System,

o Taoon

SAS 1988)
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Others researchers (Gardner and others 1995, Heath and others 1995) have
found that the primary excretory product of zebra mussels is ammonium nitrogen,
which contrasts with the observations of this study, perhaps owing to differences in
microbial activity. Mean rates of solubie nitrogen regeneration due to zebra
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mussel biomass (25.5 ug ! fresh weight day ™, £1.8 S.E.), was statistically
similar over all density levels
Declines in total phosphorus concentration (Figure 1h) in all expegimegg_l mi-

Crocosms were assoc1ated with marked densuv-denendent increases in SRP
(Figure 1i) relative to control concentrations. At high zebra mussel densities,
SRP accounted for >40 percent of the total phosphorus in the outflow (Figure
1j). In contrast, SRP accounted for <10 percent of the total phosphorus in con-
trol microcosms (Figure 1j).

Table 3. Mean (x1 S.E.) Areal Rates of Soluble Reactive Phosphorus
and Nitrate-Nitrite Nitrogen Regeneration as a Function of Zebra

Ir
H
" Mussel Density
(I Density SRP NO:NO3
I (ind./m"”) (mg m™ day™) (mg m™ day™)
H 170 0.3 (0.2) 53 (1.8)

[+ C
(I 340 0.8 (0.2) 153 (1.3)
" b, c b
" 620 1.0 (0.3) 16.9 (1.1)
" b b
" 1,300 2.5(0.3) 34.2 (1.0)
" a a

NOTES: Rates of regeneration are corrected for the control rates and normalized

with regnect to area. Different letters indicate clgngf-r‘nnf differences at n < 0.05
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| based on Duncan’s Multiple Range Analysis (ANOVA; SAS 1988).

Mean rates of SRP regeneration increased sioni
Mean rates of ORI neratio 1
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icantly with increasing zebra

mussel densxty ( mean SRP rate, mg m dav = mean zebra mussel density
(md /m® ) x 0.0019; =0. 99), with rates ranging between 0.3 and 2.5 mg m?
day (Table 3). When normalized with respect to zebra mussel blomass, rates
of SRP regeneration were statistically uniform (mean = 1.4 ug P g™ fresh
weight day'l' +0.2 S.E.). A mean regeneration rate of 0.08 pg P individual® hr!

b ) was estimated, wmcn is similar to tne nourly rate ot pnospnorus re—
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energy flow and nutrient dynamics in aquatic system.s (Leach 1993; Nicholls
and Hopkins 1993, Far slow Nape la. id Lang 1995; Holland, Jghengen, and

sink for nutnents (Stanczykowsla and Lewandowski 1993), the current study re-
sults and those of Heath and others (1995) and Mellina, Rasmussen, and Mills
(1995) indicate that zebra mussels can also play an important role as a nutrient
source by regenerating nutrients back into the water column in soluble forms.
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